
FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; December, 2021: Vol. 6 No. 3 pp. 868 – 876  

 

868 

 NUMERICAL APPLICATION OF ORDINARY DIFFERENTIAL 

EQUATIONS USING POWER SERIES FOR SOLVING  

HIGHER ORDER INITIAL VALUE PROBLEMS 
 

T. Y. Kyagya1, D. Raymond1 and J. Sabo2 

1Department of Mathematics and Statistic, Federal University, Wukari-Nigeria 
2Department of Mathematics, Adamawa University Mubi-Nigeria 

 

Received:   August 16, 2021      Accepted:  October 07, 2021 

Abstract:  In this research, we have proposed the numerical application of second derivative ordinary differential equations 

using power series for the direct solution of higher order initial value problems. The method was derived using 

power series, via interpolation and collocation procedure. The analysis of the method was studied, and it was found 

to be consistent, zero-stable and convergent. The derived method was able to solve highly stiff problems without 

converting to the equivalents system of first order ODEs. The generated results showed that the derived methods 

are notable better than those methods in literature. We further sketched the solution graph of our method and it is 

evident that the new method convergence toward the exact solution. 
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Introduction 

Mathematical modeling of real-life problems usually result 

into functional equation, for example, Ordinary differential 

equation and Partial differential equation, Integro and Integral 

differential equation, Stochastic differential equation and 

others. Not all ordinary differential equations such as those 

used to model real life problems can be solved analytically, 

Omar (2004). 

Most of the problems in science, mathematical physics and 

engineering are formulated by differential equations. The 

solution of differential equations is a significant part to 

develop the various modeling in science and engineering. 

There are many analytical methods for finding the solution of 

ordinary differential equations. But a few numbers of 

differential equations have analytic solutions where a large 

numbers of differential equations have no analytic solutions. 

In recent years, mathematical modeling of processes in 

biology, physics and medicine, particular in dynamic 

problems, cooling of a body and simple harmonic motion has 

led to significant scientific advances, both in mathematics and 

biosciences (Brauer & Castillo, 2012; Elazzouzi et al., 2019). 

The applications of mathematics in biology and physics are 

completely opening new pathways of interactions, and this is 

certainly true, particular in areas like dynamic problems and 

cooling of a body. 

This research considered the solution of high order initial 

value problems (IVPs) of ODEsof the form 

      10 ',,',,''  ayyayyytfy     (1.1) 

Equation (1.1) occurs in deferent fields of applied 

mathematics, among which are elasticity, fluid mechanics, 

and quantum mechanics as well as in engineering and physics. 

The existence and uniqueness of the solution for these 

equation have been discussed in Wend (1969). In general, 

finding the exact solutions of these equation is not easy. Over 

the years, deferent numerical methods have been developed in 

order to approximate the solution of equation (1.1). Among 

these methods are block method, linear multistep method, 

hybrid method and rung-kutta method, etc. (Lambert, 1973; 

Gear, 1966, 1971, 1978; Suleiman, 1979, 1989). Recently, 

some efforts have been made to develop hybrid block method 

for solving (1.1) directly; among others are Kuboye & Omar 

(2015), Omar & Abdelrahim (2016), Abdelrahim & Omar 

(2016), Alkasassbeh & Omar (2017), Skwame et al. (2019a, 

2019b). However, these methods are focused on specific 

points (specifically, second order IVPs). 

 

Mathematical Formulation of the Method 

Power series polynomial of the form 
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is considered as a basis function to approximate the solution 

of the initial value problems of general second order ordinary 

differential equation of the form 

      10 ',,',,'' yayyayyytfy    (2.2) 

method is derived by the introduction of off-mesh points 

through one-step scheme following the method of Gragg and 

Stetter (1964), Gear (1964), Butcher (1965), and recently 

Omar & Adeyeye (2016), Omole & Ogunware (2018), Kamo 

et al. (2018), Skwame et al. (2019b). 

Using (2.1) with 2p and 7q , the polynomial is as 

follows; 
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Differentiating (2.3) twice, to yield 
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 Substituting (2.3) into (2.1) to yield 
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Now, interpolating (2.3) at 
9

5

9

4
and  and collocating (2.5) at

1
9

8
,

9

7
,

3

2
,

9

5
,

9

4
,0 and  lead to a system of equation 

written in a matrix form below;  

UTA       (2.6) 
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 (2.7) 

 

Using Gaussian elimination method, (2.7) is solved for the sa j ' . The values of the sa j '  obtained are then substituted into 

(2.1), after some manipulations, this gives a continuous hybrid linear multistep method of the form; 
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Evaluating (2.8) non interpolating points to obtain the continuous form as, 
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Differentiating (2.8) once, yields 
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On evaluating (2.10) at all point, yield the discrete scheme as; 
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(2.11) 

 

Equation (2.9) and (2.11) can be written explicitly as
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Basic properties of the method 

In this section, the analysis of the block method, which includes the order, error constant, consistency, zero stability, 

convergence and region of absolute stability region of the method shall be study. 

Order and error constant 

Let the linear operator defined on the method be   hxy ; , where, 
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Expanding  mm YFandY  in Taylor series and comparing the coefficients of h  gives 
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Definition 3.1: The linear operator L  and the associate block method are said to be of order p  if 

22110 .0,0   pppp CCCCCC   is called the error constant. It implies that the local truncation 

error is given by    332
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Expanding the block in Taylor series expansion, gives  
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(3.3) 

 

Comparing the coefficient of h , the order p  of the method and the error constant are given respectively by 

 Tp 555555  and

 TpC 777777

2 107131.1107171.1107160.1107167.1107159.1107180.1 

   

Consistency of the method 

A numerical method is said to be consistent if its order 1p . Our method is thus consistent since it is of uniform order 5. Note 

that consistency controls the magnitude of the local truncation error committed at each stage of the computation, Fatunla (1988). 
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Zero stability of the method 

Definition 3.2: the numerical method is said to be zero-stable, if the roots kszs ,,2,1,   of the first characteristics 

polynomial  z  defined by     EzAz  0det  satisfies 1sz  and every root satisfies 1sz  have 

multiplicity not exceeding the order of the differential equation, Sunday (2018). The first characteristic polynomial is given by, 
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Thus, solving for z in 

 15 zz       (3.4) 

gives 1,0,0,0,0,0z . Hence the block method is said to be zero stable. 

Convergence of the block method 

Theorem 3.1: the necessary and sufficient conditions for linear multistep method to be convergent are that it must be consistent 

and zero-stable. Hence our method formulated is consistent (Skwame et al., 2019).  

Region of absolute stability of our method 

Definition 3.3: the region of absolute stability is the region of the complex z  plane, where hz   for which the method is 

absolute stable. To determine the region of absolute stability of the block method, the methods that compare neither the 

computation of roots of a polynomial nor solving of simultaneous inequalities was adopted. Thus, the method according to Yan 

(2011) is called the boundary locus method. Applying this methodon (2.12), we obtain the stability polynomial as 
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On applying the stability polynomial (3.5), we obtain the region of absolute stability in Fig 1. 

 
Fig. 1: Region of absolute stability of the method 
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Numerical implementation of the method 

In this section, it is important to state that the method 

formulated can be used to implement differential equations of 

the form (1.1) without reducing it to an equivalent system of 

first order. We test the effectiveness and validity of our newly 

derived method by applying it to some real life problems and 

second order highly stiff initial value problems of the form 

(1.1). Our result are compared with the existing methods of 

Skwame et al. (2017), Areo & Omojola (2015), Omole & 

Ogunware (2018), Olanegan et al. (2018), Adeyefa et al. 

(2018), Kayode & Adegboro (2018). 

Problem 1: Real-life problem 

Dynamic problems 

A kg10
 

mass is attached to a spring having a spring 

constant of MN140 . The mass is set in motion from the 

equilibrium position with an initial velocity of 1 m/sec in the 

upward direction and with an applied external force

  ttF sin5 . Find the subsequent motion of the mass

 00.110.0:  tt  if the force due to air resistance is

N
dt

dx








90 . 

Where   ttFandakm sin590,140,10   

The equation can be written as 

       






















 10',00,sin
2

1
149

2

2

xxttx
dt

dx

dt

xd
dsolver

 

With analytic solution is given by 

   tteetx tt cos9sin139990
500

1 72  
 

Source: Skwame et al. (2017) and Areo & Omojola (2015). 

 

 

Table 1: Showing the comparison of Problem 1 

X Exact Result Computed Result 
Error in our 

Method 

Error in 

Skwame et al.  

(2017) 

Error in Areo & 

Omojola (2015) 

0.1 -0.06436205154552458248 -0.06436205102813963251 5.1739e-10 1.0647e-07 1.2744e-08 

0.2 -0.08430720522644774945 -0.08430720423489605205 9.9155e-10 1.1870e-06 3.0442e-08 

0.3 -0.08405225313390041905 -0.08405225388560049594 7.5170e-10 2.2635e-06 4.1501e-08 

0.4 -0.07529304213333374810 -0.07529304281786442748 6.8453e-10 2.8219e-06 4.5385e-08 

0.5 -0.06357063960355798563 -0.06357063934273678993 2.6082e-10 2.9539e-06 4.4298e-08 

0.6 -0.05142117069384508163 -0.05142117055138588829 1.4246e-10 2.8187e-06 4.0466e-08 

0.7 -0.03993052956438697070 -0.03993052856491394937 9.9947e-10 2.5466e-06 3.5475e-08 

0.8 -0.02949865862803573900 -0.02949865777324012431 8.5480e-10 2.2235 -06 3.0285e-08 

0.9 -0.02021269131259124546 -0.02021269059230590628 7.2030e-10 1.8991e-06 2.5408e-08 

1.0 -0.01202699425403169607 -0.01202699365301409334 6.0102e-10 1.5988e-06 2.1071e-08 

 

 

Fig. 2: Graphical solution of Problem 1 

 

Problem 2: Real-life problem 

Cooling of a body 

The temperature y  degrees of a body, t  minutes after being 

placed in a certain room, satisfies the differential equation

03
2

2


dt

dy

dt

yd
. By using the substitution 

dt

dy
z  or 

otherwise, find y in terms of t given that 60y  when 

0t  and 35y
 
when 4ln6t . Find after how many 

minutes the rate of cooling of the body will have fallen below 

one degree per minute, giving your answer correct to the 

nearest minute. How cool does the body get? 

 

Formulation of the Problem. 

    1.0,
9

80
0',600,

3

'
'' 


 hyy

y
y  

With analytic solution is given by  

 
3

100

3

80 3

1










 x

exy . 

Source: Omole & Ogunware (2018) and Olanegan et al. 

(2018). 
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Table 2: Showing the comparison of problem 2 

X Exact Result 
Computed Result 

 

Error in our 

Method 

Error in Omole & 

Ogunware (2018) 

Error in 

Olanegan et 

al. (2018) 

0.1 59.12576267952015738700 59.12576267952015738700 0.0000 3.5500e-11 7.4764e-06 

0.2 58.28018626750980633900 58.28018626750980633900 0.0000 4.5800e-11 2.9394e-05 

0.3 57.46233114762558861700 57.46233114762558861700 0.0000 7.0000e-11 6.4802e-05 

0.4 56.67128850781193210600 56.67128850781193210600 0.0000 6.5000e-12 1.1279e-05 

0.5 55.90617933041637530700 55.90617933041637530700 0.0000 3.3300e-11 1.7250e-04 

0.6 55.16615341541284956400 55.16615341541284956400 0.0000 4.2000e-11 2.4310e-04 

0.7 54.45038843564751105000 54.45038843564751105000 0.0000 4.3800e-11 3.2383e-04 

0.8 53.75808902305729847200 53.75808902305729847200 0.0000 1.0700e-10 4.1393e-04 

0.9 53.08848588484580976200 53.08848588484580976200 0.0000 6.5800e-11 5.1271e-04 

1.0 52.44083494863438001100 52.44083494863438001100 0.0000 1.6900e-10 6.1951e-04 

 

 

 
Fig. 3: Graphical solution of Problem 2 

 

 

Problem 3 

Consider a highly stiff linear second order problem 

    1.0,10',00,'''  hyyyy  

With analytic solution is given by  

  )exp(1 xxy  . 

Source: Omole & Ogunware (2018), Adeyefa et al. (2018), Kayode & Adegboro (2018). 

 

 

Table 3: Showing the comparison of Problem 3 

X Exact Result 
Computed Result 

 

Error in 

our Method 

Error in 

Omole & 

Ogunware 

(2018) 

Error in 

Adeyefa et 

al. (2018) 

Error in 

Kayode & 

Adegboro 

(2018) 
0.1 -0.1051709180756476248 -0.10517091807564746098 1.6382e-16 7.5650e-11 3.2482e-12 - 

0.2 -0.2214027581601698339 -0.22140275816016928012 5.5378e-16 1.6017e-10 8.5643e-11 3.4602e-09 

0.3 -0.3498588075760031040 -0.34985880757600188832 1.2157e-15 1.7600e-10 3.4401e-10 5.6760e-09 

0.4 -0.4918246976412703178 -0.49182469764126811552 2.2023e-15 6.0784e-10 7.4251e-10 7.6413e-09 

0.5 -0.6487212707001281468 -0.64872127070012457213 3.5747e-15 1.4729e-09 1.3785e-09 1.0497e-08 

0.6 -0.8221188003905089749 -0.82211880039050357175 5.4032e-15 2.5336e-09 2.2193e-09 1.4495e-08 

0.7 -1.0137527074704765216 -1.01375270747046875340 7.7682e-15 4.7876e-09 3.3875e-09 1.8782e-08 

0.8 -1.2255409284924676046 -1.22554092849245684180 1.0763e-14 7.2770e-09 4.8470e-09 2.2799e-08 

0.9 -1.4596031111569496638 -1.45960311115693517090 1.4493e-14 1.0170e-08 6.7518e-09 2.8258e-08 

1.0 -1.7182818284590452354 -1.71828182845902615500 1.9080e-14 1.4827e-08 9.0628e-09 3.5547e-08 
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Fig. 3: Graphical solution of Problem 3 

 

 

Discussion and Conclusion 

In this research, we have proposed the numerical application 

of second derivative ordinary differential equations for the 

direct solution of higher order initial value problems. The 

method was derived using power series, via interpolation and 

collocation procedure. The analysis of the method was 

studied, and it was found to be consistent, zero-stable and 

convergent. The derived method able to solve some highly 

stiff second ODEs problems without converting to the 

equivalents system of first order ODEs. The generated results, 

as appear in the tables 4.1-4.3, shown that the derived 

methods are more accurate than the existing method of 

Skwame et al. (2017), Areo & Omojola (2015), Omole & 

Ogunware (2018), Olanegan et al. (2018), Adeyefa et al. 

(2018), Kayode & Adegboro (2018).We further sketched the 

solution graph of our method and it is evident that the new 

method convergence toward the exact solution.  
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